Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610374

RESUMO

After an ACL injury, rehabilitation consists of multiple phases, and progress between these phases is guided by subjective visual assessments of activities such as running, hopping, jump landing, etc. Estimation of objective kinetic measures like knee joint moments and GRF during assessment can help physiotherapists gain insights on knee loading and tailor rehabilitation protocols. Conventional methods deployed to estimate kinetics require complex, expensive systems and are limited to laboratory settings. Alternatively, multiple algorithms have been proposed in the literature to estimate kinetics from kinematics measured using only IMUs. However, the knowledge about their accuracy and generalizability for patient populations is still limited. Therefore, this article aims to identify the available algorithms for the estimation of kinetic parameters using kinematics measured only from IMUs and to evaluate their applicability in ACL rehabilitation through a comprehensive systematic review. The papers identified through the search were categorized based on the modelling techniques and kinetic parameters of interest, and subsequently compared based on the accuracies achieved and applicability for ACL patients during rehabilitation. IMUs have exhibited potential in estimating kinetic parameters with good accuracy, particularly for sagittal movements in healthy cohorts. However, several shortcomings were identified and future directions for improvement have been proposed, including extension of proposed algorithms to accommodate multiplanar movements and validation of the proposed techniques in diverse patient populations and in particular the ACL population.


Assuntos
Lesões do Ligamento Cruzado Anterior , Tomada de Decisão Clínica , Humanos , Algoritmos , Nível de Saúde , Cinética
2.
Sensors (Basel) ; 24(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475061

RESUMO

BACKGROUND: Data loss in wearable sensors is an inevitable problem that leads to misrepresentation during diabetes health monitoring. We systematically investigated missing wearable sensors data to get causal insight into the mechanisms leading to missing data. METHODS: Two-week-long data from a continuous glucose monitor and a Fitbit activity tracker recording heart rate (HR) and step count in free-living patients with type 2 diabetes mellitus were used. The gap size distribution was fitted with a Planck distribution to test for missing not at random (MNAR) and a difference between distributions was tested with a Chi-squared test. Significant missing data dispersion over time was tested with the Kruskal-Wallis test and Dunn post hoc analysis. RESULTS: Data from 77 subjects resulted in 73 cleaned glucose, 70 HR and 68 step count recordings. The glucose gap sizes followed a Planck distribution. HR and step count gap frequency differed significantly (p < 0.001), and the missing data were therefore MNAR. In glucose, more missing data were found in the night (23:00-01:00), and in step count, more at measurement days 6 and 7 (p < 0.001). In both cases, missing data were caused by insufficient frequency of data synchronization. CONCLUSIONS: Our novel approach of investigating missing data statistics revealed the mechanisms for missing data in Fitbit and CGM data.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Monitores de Aptidão Física , Glucose , Glicemia , Frequência Cardíaca
3.
Sensors (Basel) ; 23(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631813

RESUMO

Integrated Ultra-wideband (UWB) and Magnetic Inertial Measurement Unit (MIMU) sensor systems have been gaining popularity for pedestrian tracking and indoor localization applications, mainly due to their complementary error characteristics that can be exploited to achieve higher accuracies via a data fusion approach. These integrated sensor systems have the potential for improving the ambulatory 3D analysis of human movement (estimating 3D kinematics of body segments and joints) over systems using only on-body MIMUs. For this, high accuracy is required in the estimation of the relative positions of all on-body integrated UWB/MIMU sensor modules. So far, these integrated UWB/MIMU sensors have not been reported to have been applied for full-body ambulatory 3D analysis of human movement. Also, no review articles have been found that have analyzed and summarized the methods integrating UWB and MIMU sensors for on-body applications. Therefore, a comprehensive analysis of this technology is essential to identify its potential for application in 3D analysis of human movement. This article thus aims to provide such a comprehensive analysis through a structured technical review of the methods integrating UWB and MIMU sensors for accurate position estimation in the context of the application for 3D analysis of human movement. The methods used for integration are all summarized along with the accuracies that are reported in the reviewed articles. In addition, the gaps that are required to be addressed for making this system applicable for the 3D analysis of human movement are discussed.


Assuntos
Movimento , Pedestres , Humanos , Tecnologia
4.
Med Sci Sports Exerc ; 55(12): 2253-2262, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494829

RESUMO

PURPOSE: Peak tibial acceleration (PTA) is defined as the peak acceleration occurring shortly after initial contact, often used as an indirect measure of tibial load. As the tibia is a rotating segment around the ankle, angular velocity and angular acceleration should be included in PTA. This study aimed to quantify three-dimensional tibial acceleration components over two different sensor locations and three running speeds, to get a better understanding of the influence of centripetal and tangential accelerations on PTA typically measured in running. Furthermore, it explores tibial impulse as an alternative surrogate measure for tibial load. METHODS: Fifteen participants ran 90 s on a treadmill at 2.8, 3.3, and 3.9 m·s -1 , with inertial measurement units (IMUs) located distally and proximally on the tibia. RESULTS: Without the inclusion of rotational accelerations and gravity, no significant difference was found between axial PTA between both IMU locations, whereas in the tangential sagittal plane axis, there was a significant difference. Inclusion of rotational accelerations and gravity resulted in similar PTA estimates at the ankle for both IMU locations and caused a significant difference between PTA based on the distal IMU and PTA at the ankle. The impulse showed more consistent results between the proximal and distal IMU locations compared with axial PTA. CONCLUSIONS: Rotational acceleration of the tibia during stance differently impacted PTA measured proximally and distally at the tibia, indicating that rotational acceleration and gravity should be included in PTA estimates. Furthermore, peak acceleration values (such as PTA) are not always reliable when using IMUs because of inconsistent PTA proximally compared with distally on an individual level. Instead, impulse seems to be a more consistent surrogate measure for the tibial load.


Assuntos
Corrida , Tíbia , Humanos , Fenômenos Biomecânicos , Extremidade Inferior , Aceleração
5.
Front Sports Act Living ; 5: 1085513, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139307

RESUMO

Measuring impact-related quantities in running is of interest to improve the running technique. Many quantities are typically measured in a controlled laboratory setting, even though most runners run in uncontrolled outdoor environments. While monitoring running mechanics in an uncontrolled environment, a decrease in speed or stride frequency can mask fatigue-related changes in running mechanics. Hence, this study aimed to quantify and correct the subject-specific effects of running speed and stride frequency on changes in impact-related running mechanics during a fatiguing outdoor run. Seven runners ran a competitive marathon while peak tibial acceleration and knee angles were measured with inertial measurement units. Running speed was measured through sports watches. Median values over segments of 25 strides throughout the marathon were computed and used to create subject-specific multiple linear regression models. These models predicted peak tibial acceleration, knee angles at initial contact, and maximum stance phase knee flexion based on running speed and stride frequency. Data were corrected for individual speed and stride frequency effects during the marathon. The speed and stride frequency corrected and uncorrected data were divided into ten stages to investigate the effect of marathon stage on mechanical quantities. This study showed that running speed and stride frequency explained, on average, 20%-30% of the variance in peak tibial acceleration, knee angles at initial contact, and maximum stance phase knee angles while running in an uncontrolled setting. Regression coefficients for speed and stride frequency varied strongly between subjects. Speed and stride frequency corrected peak tibial acceleration, and maximum stance phase knee flexion increased throughout the marathon. At the same time, uncorrected maximum stance phase knee angles showed no significant differences between marathon stages due to a decrease in running speed. Hence, subject-specific effects of changes in speed and stride frequency influence the interpretation of running mechanics and are relevant when monitoring, or comparing the gait pattern between runs in uncontrolled environments.

7.
Sports Biomech ; : 1-18, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645012

RESUMO

Peak tibial acceleration (PTA) is a widely used indicator of tibial bone loading. Indirect bone loading measures are of interest to reduce the risk of stress fractures during running. However, tibial compressive forces are caused by both internal muscle forces and external ground reaction forces. PTA might reflect forces from outside the body, but likely not the compressive force from muscles on the tibial bone. Hence, the strength of the relationship between PTA and maximum tibial compression forces in rearfoot-striking runners was investigated. Twelve runners ran on an instrumented treadmill while tibial acceleration was captured with accelerometers. Force plate and inertial measurement unit data were spatially aligned with a novel method based on the centre of pressure crossing a virtual toe marker. The correlation coefficient between maximum tibial compression forces and PTA was 0.04 ± 0.14 with a range of -0.15 to +0.28. This study showed a very weak and non-significant correlation between PTA and maximum tibial compression forces while running on a level treadmill at a single speed. Hence, PTA as an indicator for tibial bone loading should be reconsidered, as PTA does not provide a complete picture of both internal and external compressive forces on the tibial bone. .

8.
Gait Posture ; 99: 60-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332318

RESUMO

BACKGROUND: Runners have a high risk of acquiring a running-related injury. Understanding the mechanisms of impact force attenuation into the body when a runner fatigues might give insight into the role of running kinematics on the aetiology of overuse injuries. RESEARCH QUESTIONS: How do running kinematics change due to running-induced fatigue? And what is the influence of experience level on changes in running kinematics due to fatigue? METHODS: Three electronic databases were searched: PubMed, Web of Science, and Scopus. This resulted in 33 articles and 19 kinematic quantities being included in this review. A quality assessment was performed on all included articles and meta-analyses were performed for 18 kinematic quantities. RESULTS AND SIGNIFICANCE: Main findings included an increase in peak acceleration at the tibia and a decrease in leg stiffness after a fatiguing protocol. Additionally, level running-induced fatigue increased knee flexion at initial contact and maximum knee flexion during swing. An increase in vertical centre of mass displacement was found in novice but not in experienced runners with fatigue. Overall, runners changed their gait pattern due to fatigue by moving to a smoother gait pattern (i.e. more knee flexion at initial contact and during swing, decreased leg stiffness). However, these changes were not sufficient to prevent an increase in peak accelerations at the tibia after a fatigue protocol. Large inter-individual differences in responses to fatigue were reported. Hence, it is recommended to investigate changes in running kinematics as a result of fatigue on a subject-specific level since group-level analysis might mask individual responses.


Assuntos
Corrida , Humanos , Fenômenos Biomecânicos/fisiologia , Corrida/fisiologia , Joelho/fisiologia , Fadiga Muscular/fisiologia , Fadiga/etiologia
9.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176085

RESUMO

Measuring gait and balance recovery is necessary post stroke. In an earlier study, we developed a minimal three Inertial Measurement Units (IMUs) system called Portable Gait Lab (PGL). The PGL used the Centroidal Moment Pivot (CMP) assumption to estimate relative foot and centre of mass (CoM) positions, and thereby estimate gait parameters in healthy participants. In this study, we validate the feasibility of the PGL to track foot and CoM trajectory during gait in four persons with chronic stroke. Spatiotemporal gait and balance measures were estimated from the foot and CoM trajectories, and compared with the reference ForceShoes™. Each participant made at least 20 steps, and the PGL was able to track foot and CoM trajectories with a root mean square of the differences with the reference of 2.9 ± 0.2 cm and 4.6 ± 3.6 cm. The distances between either foot at the end of the walking task, and step lengths were estimated by PGL with an average error with the reference of 1.98 ± 2.2 cm and 7.8 ± 0.1 cm respectively across participants. We show that our approach was able to estimate spatiotemporal and balance parameters related to gait quality in a clinically useful manner. We recommend conducting further studies to study the feasibility of using the PGL system for variable gait patterns measured post stroke.


Assuntos
Marcha , Acidente Vascular Cerebral , Humanos , Fenômenos Biomecânicos , , Caminhada
11.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161701

RESUMO

A Drift-Free 3D Orientation and Displacement estimation method (DFOD) based on a single inertial measurement unit (IMU) is proposed and validated. Typically, body segment orientation and displacement methods rely on a constant- or zero-velocity point to correct for drift. Therefore, they are not easily applicable to more proximal segments than the foot. DFOD uses an alternative single sensor drift reduction strategy based on the quasi-cyclical nature of many human movements. DFOD assumes that the quasi-cyclical movement occurs in a quasi-2D plane and with an approximately constant cycle average velocity. DFOD is independent of a constant- or zero-velocity point, a biomechanical model, Kalman filtering or a magnetometer. DFOD reduces orientation drift by assuming a cyclical movement, and by defining a functional coordinate system with two functional axes. These axes are based on the mean acceleration and rotation axes over multiple complete gait cycles. Using this drift-free orientation estimate, the displacement of the sensor is computed by again assuming a cyclical movement. Drift in displacement is reduced by subtracting the mean value over five gait cycle from the free acceleration, velocity, and displacement. Estimated 3D sensor orientation and displacement for an IMU on the lower leg were validated with an optical motion capture system (OMCS) in four runners during constant velocity treadmill running. Root mean square errors for sensor orientation differences between DFOD and OMCS were 3.1 ± 0.4° (sagittal plane), 5.3 ± 1.1° (frontal plane), and 5.0 ± 2.1° (transversal plane). Sensor displacement differences had a root mean square error of 1.6 ± 0.2 cm (forward axis), 1.7 ± 0.6 cm (mediolateral axis), and 1.6 ± 0.2 cm (vertical axis). Hence, DFOD is a promising 3D drift-free orientation and displacement estimation method based on a single IMU in quasi-cyclical movements with many advantages over current methods.


Assuntos
Aceleração , Corrida , Fenômenos Biomecânicos , Humanos , Movimento , Rotação
12.
J Neuroeng Rehabil ; 19(1): 2, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35016694

RESUMO

BACKGROUND: Upper limb kinematic assessments provide quantifiable information on qualitative movement behavior and limitations after stroke. A comprehensive characterization of spatiotemporal kinematics of stroke subjects during upper limb daily living activities is lacking. Herein, kinematic expressions were investigated with respect to different movement types and impairment levels for the entire task as well as for motion subphases. METHOD: Chronic stroke subjects with upper limb movement impairments and healthy subjects performed a set of daily living activities including gesture and grasp movements. Kinematic measures of trunk displacement, shoulder flexion/extension, shoulder abduction/adduction, elbow flexion/extension, forearm pronation/supination, wrist flexion/extension, movement time, hand peak velocity, number of velocity peaks (NVP), and spectral arc length (SPARC) were extracted for the whole movement as well as the subphases of reaching distally and proximally. The effects of the factors gesture versus grasp movements, and the impairment level on the kinematics of the whole task were tested. Similarities considering the metrics expressions and relations were investigated for the subphases of reaching proximally and distally between tasks and subgroups. RESULTS: Data of 26 stroke and 5 healthy subjects were included. Gesture and grasp movements were differently expressed across subjects. Gestures were performed with larger shoulder motions besides higher peak velocity. Grasp movements were expressed by larger trunk, forearm, and wrist motions. Trunk displacement, movement time, and NVP increased and shoulder flexion/extension decreased significantly with increased impairment level. Across tasks, phases of reaching distally were comparable in terms of trunk displacement, shoulder motions and peak velocity, while reaching proximally showed comparable expressions in trunk motions. Consistent metric relations during reaching distally were found between shoulder flexion/extension, elbow flexion/extension, peak velocity, and between movement time, NVP, and SPARC. Reaching proximally revealed reproducible correlations between forearm pronation/supination and wrist flexion/extension, movement time and NVP. CONCLUSION: Spatiotemporal differences between gestures versus grasp movements and between different impairment levels were confirmed. The consistencies of metric expressions during movement subphases across tasks can be useful for linking kinematic assessment standards and daily living measures in future research and performing task and study comparisons. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT03135093. Registered 26 April 2017, https://clinicaltrials.gov/ct2/show/NCT03135093 .


Assuntos
Transtornos Motores , Acidente Vascular Cerebral , Fenômenos Biomecânicos , Humanos , Movimento , Acidente Vascular Cerebral/complicações , Extremidade Superior , Articulação do Punho
13.
Int J Impot Res ; 34(1): 1-7, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33087873

RESUMO

The golden standard for measuring nocturnal erections is the RigiScan Plus. It is a relatively big and uncomfortable device dating from the previous century. The aim of this perspective is to conceptualize a user-friendly sensor that can be used at home for monitoring nocturnal erections. A literary search is carried out to explore the physiological changes during nocturnal tumescence and detumescence that can be measured non-invasively. Five sensor concepts are considered: plethysmography for penile arterial pulse, displacement sensor for axial length, strain gauges for radial rigidity and circumference, temperature sensors for measuring skin and cavernosal temperature, and a saturation sensor to measure hypoxia in cavernosal tissue during maximal rigidity. We think that due to practical issues, measuring penile length during sleep is impossible. Further research is recommended to investigate the remaining sensor concepts. Whether a combination of these techniques is favorable or only one of them should be studied more thoroughly.


Assuntos
Disfunção Erétil , Ereção Peniana , Humanos , Masculino , Ereção Peniana/fisiologia , Pênis , Sono
14.
PLoS One ; 16(12): e0260162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34910744

RESUMO

Deep brain stimulation (DBS) is an established clinical therapy, and directional DBS electrode designs are now commonly used in clinical practice. Directional DBS leads have the ability to increase the therapeutic window of stimulation, but they also increase the complexity of clinical programming. Therefore, computational models of DBS have become available in clinical software tools that are designed to assist in the identification of therapeutic settings. However, the details of how the DBS model is implemented can influence the predictions of the software. The goal of this study was to compare different methods for representing directional DBS electrodes within finite element volume conductor (VC) models. We evaluated 15 different DBS VC model variants and quantified how their differences influenced estimates on the spatial extent of axonal activation from DBS. Each DBS VC model included the same representation of the brain and head, but the details of the current source and electrode contact were different for each model variant. The more complex VC models explicitly represented the DBS electrode contacts, while the more simple VC models used boundary condition approximations. The more complex VC models required 2-3 times longer to mesh, build, and solve for the DBS voltage distribution than the more simple VC models. Differences in individual axonal activation thresholds across the VC model variants were substantial (-24% to +47%). However, when comparing total activation of an axon population, or estimates of an activation volume, the differences between model variants decreased (-7% to +8%). Nonetheless, the technical details of how the electrode contact and current source are represented in the DBS VC model can directly affect estimates of the voltage distribution and electric field in the brain tissue.


Assuntos
Estimulação Encefálica Profunda/métodos , Modelos Neurológicos , Axônios/fisiologia , Estimulação Encefálica Profunda/instrumentação , Condutividade Elétrica , Eletrodos , Humanos , Doença de Parkinson/terapia
15.
J Neuroeng Rehabil ; 18(1): 154, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702281

RESUMO

BACKGROUND: Smoothness is commonly used for measuring movement quality of the upper paretic limb during reaching tasks after stroke. Many different smoothness metrics have been used in stroke research, but a 'valid' metric has not been identified. A systematic review and subsequent rigorous analysis of smoothness metrics used in stroke research, in terms of their mathematical definitions and response to simulated perturbations, is needed to conclude whether they are valid for measuring smoothness. Our objective was to provide a recommendation for metrics that reflect smoothness after stroke based on: (1) a systematic review of smoothness metrics for reaching used in stroke research, (2) the mathematical description of the metrics, and (3) the response of metrics to simulated changes associated with smoothness deficits in the reaching profile. METHODS: The systematic review was performed by screening electronic databases using combined keyword groups Stroke, Reaching and Smoothness. Subsequently, each metric identified was assessed with mathematical criteria regarding smoothness: (a) being dimensionless, (b) being reproducible, (c) being based on rate of change of position, and (d) not being a linear transform of other smoothness metrics. The resulting metrics were tested for their response to simulated changes in reaching using models of velocity profiles with varying reaching distances and durations, harmonic disturbances, noise, and sub-movements. Two reaching tasks were simulated; reach-to-point and reach-to-grasp. The metrics that responded as expected in all simulation analyses were considered to be valid. RESULTS: The systematic review identified 32 different smoothness metrics, 17 of which were excluded based on mathematical criteria, and 13 more as they did not respond as expected in all simulation analyses. Eventually, we found that, for reach-to-point and reach-to-grasp movements, only Spectral Arc Length (SPARC) was found to be a valid metric. CONCLUSIONS: Based on this systematic review and simulation analyses, we recommend the use of SPARC as a valid smoothness metric in both reach-to-point and reach-to-grasp tasks of the upper limb after stroke. However, further research is needed to understand the time course of smoothness measured with SPARC for the upper limb early post stroke, preferably in longitudinal studies.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Benchmarking , Fenômenos Biomecânicos , Humanos , Movimento , Acidente Vascular Cerebral/complicações , Extremidade Superior
16.
Sensors (Basel) ; 21(17)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34502845

RESUMO

BACKGROUND: Closed loop bi-hormonal artificial pancreas systems, such as the artificial pancreas (AP™) developed by Inreda Diabetic B.V., control blood glucose levels of type 1 diabetes mellitus patients via closed loop regulation. As the AP™ currently does not classify postures and movements to estimate metabolic energy consumption to correct hormone administration levels, considerable improvements to the system can be made. Therefore, this research aimed to investigate the possibility to use the current system to identify several postures and movements. METHODS: seven healthy participants took part in an experiment where sequences of postures and movements were performed to train and assess a computationally sparing algorithm. RESULTS: Using accelerometers, one on the hip and two on the abdomen, user-specific models achieved classification accuracies of 86.5% using only the hip sensor and 87.3% when including the abdomen sensors. With additional accelerometers on the sternum and upper leg for identification, 90.0% of the classified postures and movements were correct. CONCLUSIONS: The current hardware configuration of the AP™ poses no limitation to the identification of postures and movements. If future research shows that identification can still be done accurately in a daily life setting, this algorithm may be an improvement for the AP™ to sense physical activity.


Assuntos
Diabetes Mellitus Tipo 1 , Pâncreas Artificial , Dispositivos Eletrônicos Vestíveis , Algoritmos , Glicemia , Humanos , Insulina , Movimento , Postura
17.
J Neuroeng Rehabil ; 18(1): 144, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560898

RESUMO

BACKGROUND: The cause of smoothness deficits as a proxy for quality of movement post stroke is currently unclear. Previous simulation analyses showed that spectral arc length (SPARC) is a valid metric for investigating smoothness during a multi-joint goal-directed reaching task. The goal of this observational study was to investigate how SPARC values change over time, and whether SPARC is longitudinally associated with the recovery from motor impairments reflected by the Fugl-Meyer motor assessment of the upper extremity (FM-UE) in the first 6 months after stroke. METHODS: Forty patients who suffered a first-ever unilateral ischemic stroke (22 males, aged 58.6 ± 12.5 years) with upper extremity paresis underwent kinematic and clinical measurements in weeks 1, 2, 3, 4, 5, 8, 12, and 26 post stroke. Clinical measures included amongst others FM-UE. SPARC was obtained by three-dimensional kinematic measurements using an electromagnetic motion tracking system during a reach-to-grasp movement. Kinematic assessments of 12 healthy, age-matched individuals served as reference. Longitudinal linear mixed model analyses were performed to determine SPARC change over time, compare smoothness in patients with reference values of healthy individuals, and establish the longitudinal association between SPARC and FM-UE scores. RESULTS: SPARC showed a significant positive longitudinal association with FM-UE (B: 31.73, 95%-CI: [27.27 36.20], P < 0.001), which encompassed significant within- and between-subject effects (B: 30.85, 95%-CI: [26.28 35.41], P < 0.001 and B: 50.59, 95%-CI: [29.97 71.21], P < 0.001, respectively). Until 5 weeks post stroke, progress of time contributed significantly to the increase in SPARC and FM-UE scores (P < 0.05), whereafter they levelled off. At group level, smoothness was lower in patients who suffered a stroke compared to healthy subjects at all time points (P < 0.05). CONCLUSIONS: The present findings show that, after stroke, recovery of smoothness in a multi-joint reaching task and recovery from motor impairments are longitudinally associated and follow a similar time course. This suggests that the reduction of smoothness deficits quantified by SPARC is a proper objective reflection of recovery from motor impairment, as reflected by FM-UE, probably driven by a common underlying process of spontaneous neurological recovery early post stroke.


Assuntos
Transtornos Motores , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Masculino , Paresia/etiologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/complicações , Extremidade Superior
18.
Sensors (Basel) ; 21(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799717

RESUMO

Cardiac surgery patients infrequently mobilize during their hospital stay. It is unclear for patients why mobilization is important, and exact progress of mobilization activities is not available. The aim of this study was to select and evaluate accelerometers for objective qualification of in-hospital mobilization after cardiac surgery. Six static and dynamic patient activities were defined to measure patient mobilization during the postoperative hospital stay. Device requirements were formulated, and the available devices reviewed. A triaxial accelerometer (AX3, Axivity) was selected for a clinical pilot in a heart surgery ward and placed on both the upper arm and upper leg. An artificial neural network algorithm was applied to classify lying in bed, sitting in a chair, standing, walking, cycling on an exercise bike, and walking the stairs. The primary endpoint was the daily amount of each activity performed between 7 a.m. and 11 p.m. The secondary endpoints were length of intensive care unit stay and surgical ward stay. A subgroup analysis for male and female patients was planned. In total, 29 patients were classified after cardiac surgery with an intensive care unit stay of 1 (1 to 2) night and surgical ward stay of 5 (3 to 6) nights. Patients spent 41 (20 to 62) min less time in bed for each consecutive hospital day, as determined by a mixed-model analysis (p < 0.001). Standing, walking, and walking the stairs increased during the hospital stay. No differences between men (n = 22) and women (n = 7) were observed for all endpoints in this study. The approach presented in this study is applicable for measuring all six activities and for monitoring postoperative recovery of cardiac surgery patients. A next step is to provide feedback to patients and healthcare professionals, to speed up recovery.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Caminhada , Acelerometria , Feminino , Hospitais , Humanos , Tempo de Internação , Masculino
19.
J Neuroeng Rehabil ; 18(1): 37, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596942

RESUMO

BACKGROUND: The foot progression angle is an important measure used to help patients reduce their knee adduction moment. Current measurement systems are either lab-bounded or do not function in all environments (e.g., magnetically distorted). This work proposes a novel approach to estimate foot progression angle using a single foot-worn inertial sensor (accelerometer and gyroscope). METHODS: The approach uses a dynamic step frame that is recalculated for the stance phase of each step to calculate the foot trajectory relative to that frame, to minimize effects of drift and to eliminate the need for a magnetometer. The foot progression angle (FPA) is then calculated as the angle between walking direction and the dynamic step frame. This approach was validated by gait measurements with five subjects walking with three gait types (normal, toe-in and toe-out). RESULTS: The FPA was estimated with a maximum mean error of ~ 2.6° over all gait conditions. Additionally, the proposed inertial approach can significantly differentiate between the three different gait types. CONCLUSION: The proposed approach can effectively estimate differences in FPA without requiring a heading reference (magnetometer). This work enables feedback applications on FPA for patients with gait disorders that function in any environment, i.e. outside of a gait lab or in magnetically distorted environments.


Assuntos
Análise da Marcha/instrumentação , Dispositivos Eletrônicos Vestíveis , Acelerometria/instrumentação , Adulto , Fenômenos Biomecânicos , Pé/fisiopatologia , Humanos , Masculino
20.
IEEE J Transl Eng Health Med ; 9: 2100211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33344099

RESUMO

BACKGROUND: Stroke is one of the main causes of disability in the world, causing loss of motor function on mainly one side of the body. A proper assessment of motor function is required to help to direct and evaluate therapy. Assessment is currently performed by therapists using observer-based standardized clinical assessment protocols. Sensor-based technologies can be used to objectively quantify the presence and severity of motor impairments in stroke patients. METHODS: In this work, a minimally obstructive distributed inertial sensing system, intended to measure kinematics of the upper extremity, was developed and tested in a pilot study, where 10 chronic stroke subjects performed the arm-related tasks from the Fugl-Meyer Assessment protocol with the affected and non-affected side. RESULTS: The pilot study showed that the developed distributed measurement system was adequately sensitive to show significant differences in stroke subjects' arm postures between the affected and non-affected side. The presence of pathological synergies can be analysed using the measured joint angles of the upper limb segments, that describe the movement patterns of the subject. CONCLUSION: Features measured by the system vary from the assessed FMA-UE sub-score showing its potential to provide more detailed clinical information.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Projetos Piloto , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/diagnóstico , Extremidade Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA